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Outline
e Part | (90 Min, 9:00—10:30)
* Introduction (Fuli Feng, |5 Min)
* Potential outcome framework for recommendation (Peng VWu, 60~70 Min)

» Q&A (5 Min)
* Part 2 (90 Min, 10:45-12:15)

* Structural causal model-based recommendation (Yang Zhang and Wenjie
Wang, 60~70 Min)

* Comparison (VWenjie Wang, 2 Min)
* Open problems, future directions and conclusion (Fuli Feng, 20 Min)

- Q&A (5 Min)



* Information Seeking

i i TR
Information explosion problem? 5 Ay
» Information seeking requirements i ‘?'f%
e
< E-commerce (Taobao/PDD/Amazon) 12 million items in Amazon

< Social networking (Facebook/VWeibo/Wechat) 2.8 billion users in Facebook

720,000 hours videos uploaded

< Content sharing platforms (Tiktok/Kwai/Pinterest) per day in Youtube

Recommender system has been recognized as a
. . How to
powerful tool to address information overload. handle?

You may like?
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* Ecosystem of Recsys

* Workflow of RS
* Training: RS is trained/updated [@ Collecting Cé

on observed user-item
interaction data.

(clicks, rates ...) Training

* Serving: RS infers user
preference over items and
exposes top-n items. User

Feedback Loop

Q System
e Collecting: User actions on .
:

exposed items are merged into
the training data.

:J_: Serving
\/

(Top-N recommendations)

* Forming a Feedback Loop

Chen et al. arxiv 2021. Bias and Debias in Recommender System: A Survey and Future Directions



* Mainstream Models: Fitting Historical Data

* Minimizing the difference between historical feedback and model prediction

& . Predicted Score History feedback
3|2(|1]|4 3 1

= 21235 ~ 23| |5
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* Collaborative filtering: Similar users perform similarly in future

Shallow representation learning Neural representation learning
- Matrix factorization & factorization machines - Neural collaborative filtering

— ( oo ooy (o) - Graph neural networks

R e et e ezl s | - Sequential model

x| 710 0 ~Jo]o]]o|-loslosloso]wfol o]o]~lll[]s - Textual & Visual encoders
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! e e T | | features and interaction labels )




» Shortcomings of Data-Driven Methods

* Bias in data (Collecting):
Data

 Data is observational rather than

experimental (missing-not-at-random) < é\
() o
™ Bias

 Affected by many hidden factors:

* Public opinions

* Drift along time:

* User/item feature changes

* Income, marriage status

« iPhone 12 (2021->2022)

e Preference evolution



» Shortcomings of Data-Driven Methods

* Learning correlation != Learning preference: Correlations may not reflect
the true causes of interaction.

* Three basic types of correlations:

 Causation @ @

* Stable and explainable
High quality
High price

T Clret >
" opularity
* Condition on S
* Spurious correlation @
6

* Confounding

* lgnoring X
* Spurious correlation



* Shortcomings of Data-Driven Methods

* Data-driven methods would learn skewed user preference:

Biases

True Preference (Confounding, Collision)

distribution on

testing data
(Stable Causation)

Skewed preference
distribution exhibited on

training data
(With spurious correlation)

* Data-driven methods may infer spurious correlations, which are
deviated from reflecting user true preference and lack interpretation.

Chen et al. arxiv 2021. Bias and Debias in Recommender System: A Survey and Future Directions



* Why Causal Inference?

* Aim: Understanding the inherent
causal mechanism of user behavior

* Capturing user true preference

* Making reliable & explainable
recommendations

* Correlation + Causality > Correlation

Data-driven methods 4

Predictions

Correlations

ﬂ|

Causality

'A

Causality-enhanced methods




e Classification of Causal Recommmendation

* Potential Outcome Framework

CAUSAL
INFERENCE

STATISTICS

STATISTICS,
SOCIAL

Evaluation

Debiasing

(Donald B. Rubin) Explanation

Recommendation

* Structural Causal Model (SCM)

Fairness

Robustness & OOD
generalization

-

( | MODELS, REASONING
AND INFERENCF
| JUDEA PEARL
(Judea Pearl)



Outline

[ )
* Potential outcome framework for recommendation
[ )
[ )



Potential Outcome Framework

Basic Methods: IPS, EIB and DR

Limitations of Basic Methods

Enhanced DR Methods

Uniform Data-Aware Methods

n Causal Analysis Framework

11



Potential Outcome Framework
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« Causal analysis framework

4 ) /

Scientific
Questions

. J Causal Analysis
- N ) :

Data

. J K

Framework

[ Causal Estimands

Recoverability

Estimation Models

~

/

—)

Conclusions

A unified workflow of investigating causal problems consists of three steps:

@ Define a causal estimand to answer the scientific question.

@ Discuss the recoverability of the estimand given the data.

© Build models to obtain the consistent estimator of the estimand.

Peng Wu, Haoxuan Li, Yuhao Deng, Wenjie Hu, Quanyu Dai, Zhenhua Dong, Jie Sun, Rui Zhang, Xiao-Hua Zhou (2021), "Causal
Analysis Framework for Recommendation”, arXiv:2201.06716. (To appear in 1J-CAl)



« Causal analysis framework

Potential
Outcome
Framework
Scientificw l Causal ) r
Question J 5 Estimand J L Data
O

Identifiability/
Recoverability
oo-l‘ [ Models J

[ Results ]
Imaginary World Real World

Peng Wu, Haoxuan Li, Yuhao Deng, Wenjie Hu, Quanyu Dai, Zhenhua Dong, Jie Sun, Rui Zhang, Xiao-Hua Zhou (2021), "Causal
Analysis Framework for Recommendation”, arXiv:2201.06716. (To appear in 1J-CAl)



* Key elements in PO framework

unit

Target
population

Estimand

potential
outcome

treatment outcome

Unit: the most fine-grained research subject.
Target population: the population that we want to make an inference/prediction on.
Causal estimand: the causal parameter, providing a recipe for answering the

scientific question of interest from any hypothetical data whenever it is available.



PO framework in RS

@ Unit: a user-item pair (u,1).
@ Target population: the set of all user-item pairs D =U x L.
@ Feature: the feature x, ; describes user-item pair (u, i).

@ Treatment: o,; € {1,0}. It is the exposure status of (v, i), where o, ; =1
or 0 denotes item i is exposed to user u or not.

@ Outcome: the feedback r, ; of user-item pair (u,i).

@ Potential outcome: r, j(o) for o € {0,1}. It is the outcome that would be
observed if o, ; had been set to o.



PO framework in RS

xu,i

Ou,i M,i(0) | |, (1)
| [
|

7"u,i

In RS, we often want to answer the intervention question “if recommending an item
to a user, what would the feedback be”. Formally, the estimand is

E(ru,i(1) | Xu,i), (1)
it requires to predict the potential outcome r,, ;(1) using feature x,, ;.



PO framework in RS

Table 1: Data structure of example 1.

Example 1: video websites.
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@ r,i: the true rating of user u for video J.

SSENENTS

@ o, observing indictor.
o, =1 <= r, is observed

We can regard the observing indicator o, ; as the treatment, and define r,,;(1) as
the true rating If o,,; = 1 for all user-item pairs. Here we use r,,;(1) instead of r, ; IS
to underline that the outcome is part of observable.

Goal: predict the potential outcome r,, ;(1) using feature x,, ;.



Example 2: advertising CTR Predication.

@ ryi: ryj = 1 if uclicks on item i; r,; = 0 otherwise.

@ 0, 0, — 1 if item i is exposed to u; o,; = 0 otherwise.

@ CTR: E[r,(1)|xyi] = P(rui(1) = 1|xy.;).
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Example 3: advertising post-click CVR Predication.

@ ryi: ryi — 1 if user u purchases item i; ryj — 0 otherwise.

@ o, o,i = 1 if user u clicks item i o,; = 0 otherwise.
@ post-click CVR: E[ry;(1)|xy.;] = P(rui(1) = 1|xy.;)-



e Remarks

« The definition of the causal estimand does not involve the data collected and the
model adopted.

« It also doesn't not involve the relationship between x,,;, o, ; and r, ;. In other
word, when defining causal estimand, it needn't distinguish confounder, collider,
Instrument variable, etc.

Significance: Through formalizing the scientific question into a causal estimand,
we can answer the following questions: what exactly is being estimated and for
what purpose.



Basic Methods: IPS, EIB and DR

21



» Challenges

Oui Xui Fui rui(1)
* Missing data: 1 vV v
selection bias 1 v o v v
founding bias 1l v v v
or con g _ - L
0
0

« Data sparsity:

ML 100K Coat Shopping Yahoo! R3

#users 943 290 15400
#items 1682 300 1000

#MNAR ratings 100000 6960 311704
#MAR ratings 0 4640 54000

Missing rate is very high:
o ML 100K: 100000/(943 % 1682) = 0.063;

o Coat Shopping: 6960/(290 % 300) = 0.080;
o Yahoo! R3: 311704/(15400 % 1000) = 0.020.

22



e |deal Loss

Let f(x, ;) be a recommender model with parameter ¢ and 7, ;(1) = f,(x, ;) be
the predicted E[ry, ; (1)[xy;].

Ideal Loss: If all potential outcomes {r, ;(1): (v, i) € D} were observed, the
ideal loss function for training ¢ is

| 1
ﬁideaf(@) — m Z €u,is (2)
(u,i)eD
where e, ; = L(r,i(1), f5(xy.i)) is the prediction error, such as the least square loss:
eu,i = (fo(xu,i) — rui(1))*. (3)

Noticing that e, ; is computable only when o, ; = 1, Lizeq:(¢p) is infeasible. As such,
our target is constructing estimators that approximate to L;g.,;(¢®).

23



* Nalve Estimator
Naive Estimator

HE.I'.-"E - |O| -1 Z EU K

(u,i)eO

where O = {(u, i) | (u,i) € D,o0,,; = 1} be the set of observed events. Since

Enawe( ) _}’ ]E[Eu :|Du.- — ]-]

we can see that

@ For RCT data, i.e, e,; L o, ;, which implies that E[e, j|o,; = 1] = E[e, ;].

@ Otherwise, Lpaive(®) is a biased estimator of Lpaive().

When the estimator is biased, the corresponding recommendation model is in
general sub-optimal.

24



* Inverse Propensity Score (IPS)

. 1 Oy ..'E'u’.;
Lips(¢) = DI Z —, (4)
(u,i)eD Pu,i
where p, ; == P(0,; = 1| x,;) is the propensity score.

The unbiasedness property of IPS estimator is based on the following assumption
ru,f(l) 1 Oy, i ‘ Xu,is (5)

which implies that e, ; L o, ; | xy;. Then if p,; = pu.i.

. Du,jeu,j Du,ieu I
E[Lips(0)] = E P ] = E[E{ Do | Xu,i}]
E(Du?f‘xu?f) ’ E{Eu,i|xu=f)

— F

Pu,f
— E[E(EU,leu:f)] — ]E[E'UJ]

Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, Thorsten Joachims (2016). “Recommendations as
treatments: Debiasing learning and evaluation”, ICML.

25



* Self-Normalized IPS (SNIPS)

E . Oy, i€u,i
{U,!}EI:' ﬁ'u_.f

E(u?f]ED %

Lsnips(@) =

The SNIPS estimator often has lower variance than the IPS estimator but has a
small bias.

Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, Thorsten Joachims (2016). “Recommendations as
treatments: Debiasing learning and evaluation”, ICML.



* Error Imputation-Based (EIB) Method

Lep(¢,0) = |D\_1 Z [ou.i€ui + (1 — 04.i)éuil,
(u,i)eD

where é,; = gg(x,.;) fits the prediction error e, ; using x, ;, i.e., it estimates
Bu,i -— E[Eu,i|xu=i]-

Given é, j, we have

E[EE;B( )] — E:Uu,ieu,i T (1 — Oy f)éu f']
= Eleyi] +E[(1 — 04,i)(éu,i — €u.i)]
= Eleyi] + E[E{(1 — 04,i)(éu,i — €u,i)|Xu,i}]
= Eley,i] + E[E(1 — oy, i|xu,i) - E(éyi — euilXu,i)]
= Eleu,i] +E[(1 — pu,i)(éu.i — Gu.i))-

If é,; = gu.i, EIB estimator is unbiased.

27



* Doubly Robust Joint Learning (DR-]JL)

EDR(':EE’? H) — ﬁ Z {éu,i T DU,F(EULF _ étU:f)} ; (T)

(u,i)eD

Joint-Learning:
@ given 0, ¢ is updated by minimizing Egﬁ(qﬁ.ﬁ];

@ given (3 f# is updated by minimizing

DR — _,-',|I'_ Du.,: E'u: Eu,f)z
£ A (g0)= Y - ®

Xiaojie Wang, Rui Zhang, Yu Sun, Jianzhong Qi (2019), “Doubly Robust Joint Learning for Recommendation on Data Missing Not at

Random”, ICML. 28



* Doubly Robust Property
Given p,; and &, ;, we have

Ouieuf_éui
B[Cor(0.0)] = Efe,, + 24l

_ E[Eu,i n (Du,f — Pu,i)(eu:f — Eu,.-')]
Pu,f
K u,i nu: — nu.f u,i
_ E[Eu,j] —|—E[ {(D ; P ]( €u, )lX . }]

)

E u:'_ﬂu.-' u, u.f_ﬂu.-' u,i
:E[E‘u,,‘]—I—E[ (D-, P,|X 36 (E, E:‘X,)]

_ E[Eu,,‘] + ]E[(.Du:r' _ Pu?:')ﬂ‘ (gu?: Eu,.-')]‘

Pu,f

Thus, If either é,; = gy.; or pu.i = Pu.i,

E[Lpr(0,0)] = Eleu,i].

29



Limitations of Basic Methods

30



 Limitations of IPS and DR methods

Table 1: Comparison of various debiasing estimators

Doubly Robust to Boundedness Without Low
Robust Small Propensities Extrapolation Variance
IPS X X X v X
SNIPS X 0 v v X
EIB X v v X v
DR v X X 0 0

Note: symbols v', 0 and x denotes good, medium and bad, respectively.

Peng Wu, Haoxuan Li, Yan Lyu & Xiao-Hua Zhou (2022), ‘Doubly Robust Collaborative Targeted Learning for Recommendation on Data
Missing Not at Random’, arXiv:2203.10258.

31



* Five Desired Properties

 Doubly robust: DR enjoys the property of double robustness; In contrast, IPS
and EIB do not meet the property of double robustness.

* Robust to small propensities: Both the IPS and DR use 1/p,,; as the weight to
recover the target distribution. In the presence of small propensities, the weights
will become extremely large and cause instability. In contrast, EIB does not
suffer from such a problem.

« Boundedness: Both the IPS and DR may lie outside the range of L;z.4;(¢), I.€.,
they do not enjoy the property of boundedness. For example, if we set e, ; €
[0,1], then L;4.4:(¢) € [0,1], while L;ps(¢p) and Ly (¢, 8) may not be within the
range. The EIB can guarantee boundedness property easily if the error
Imputation model is chosen appropriately.



* Five Desired Properties

« Without extrapolation (small bias): EIB usually has a large bias, which is a
consequence of making implicitly extrapolation. Specifically, the error imputation
model is trained with exposed events while using the predicted values for
unexposed events. This relies heavily on extrapolation since the exposed
events are sparse and there may exist a significant difference between the
distributions of exposed events and unexposed events. Thus, itis hard to
obtain accurate error imputation and leads to poor performance. In comparison,
the estimation of propensity score doesn't rely on extrapolation.

 Low variance: It can be shown that EIB has the smallest variance among these
methods.



* Five Desired Properties

Theorem 1. If p, ; and €, ; are accurate estimates of p, ; and g, ;, respectively, i.e., Dy, ; = Dy i,
€u,i = Gu.i, then both IPS, EIB and DR estimators are unbiased, and

V(LEeiB) < V(Lpr) < V(Lrps),
where the equality holds if and only if p,, ; = 1 for all (u,1) € D. The variances are given as

I 02($u.i)+93z‘
Vi(Lips)= [D] IE( P

*(@u,) 2 2]
o+ g) — {Blewa))?];

V(Lgrs) = |D|™} :E(pu,iag(xu,i) -+ 912”) — {]E(eu,z')}g]’

where ag(a:u,,;) = V(ey,i|Zu i). In addition, when p,, ; tends to 0, V(Lips) and V(LpRr) tends to
infinity, and V(L g g) tends to its minimum |D|~'V(gy.;).

) = {Ee..)¥?);

V(Lpr) = |D|* :]E(U

34



Enhanced DR Methods

35



* Three Enhanced Methods

 More Robust Doubly Robust (MRDR): bias-variance trade-off.
 Doubly robust targeted learning: capture the merits of both EIB and DR.

« Multi-task learning: parameter sharing.



* More Robust Doubly Robust (MRDR)

MRDR enhances the robustness of DR-JL by optimizing the variance of the DR
estimator with the imputation model.

Lpr(¢,0) = % > [éu,r'+ Ouil€ui é“’f]},

D (u,i)ED Pui
DR-JL MRDR
@ given 6, ¢ is updated by minimizing Lpg(&, ﬁ) @ given 0, ¢ is updated by minimizing Lpg(¢, 5)
@ given {fr @ is updated by minimizing @ given c:i'; ¢ is updated by minimizing
ﬁDE—JL(qﬁ?ﬂ) _ Z Du,F[éu,f — EU,I)E | EME'DR(H) _ Z ﬂu!;(émf — Eu,;‘)z . 1— .Eu,:'.
{U.,I']EI:’ PLI',.I: [U,-":lEI-:' pu,r’ pu,'r'

MRDR substitutes the loss function of the imputation model. .



*|dea of More Robust Doubly Robust (MRDR)

This substitution can help reduce the variance of Ly (¢,8) and hence a more
robust estimator might be achieved.

2
- Du.- — Pu,i)\€u,i — Cu,i
VolLpr(9,0)] = IE@[ > 2 'ﬂ]g{ ) |
(u,i)eD Py

Siyuan Guo, Lixin Zou, Yiding Liu, Wenwen Ye, Suqgi Cheng, Shuaigiang Wang, Hechang Chen, Dawei Yin, and Yi Chang (2021),
“‘Enhanced Doubly Robust Learning for Debiasing Post-Click Conversion Rate Estimation”. SIGIR



 Motivation of DR-TMLE

Table 1: Comparison of various debiasing estimators

Doubly Robust to Boundedness Without Low
Robust  Small Propensities Extrapolation Variance
IPS X X X v X
SNIPS X o v v X
EIB X v v X v
DR v X X 0 0

Note: symbols v', 0 and x denotes good, medium and bad, respectively.

* DR outperforms IPS in terms of both bias and variance.

 When compared with EIB, DR tends to have a smaller bias, while EIB has a
smaller variance. It involves the bias-variance trade-off.

 ldeally, it is desirable to develop a method that can capture the merits of both
DR and EIB.

Peng Wu, Haoxuan Li, Yan Lyu & Xiao-Hua Zhou (2022), ‘Doubly Robust Collaborative Targeted Learning for Recommendation on Data
Missing Not at Random’, arXiv:2203.10258.
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eBasic iIdea of DR-TMLE

DR and EIB are related via the " correction term”. Specifically, it is noted that

1 1 — ﬁui
JC'DR — T Ou,i€u,i T 1 — Ou,i éu.f + T Ou,i\€u,i — éu,i ~ -,
5 2| (1= 0wl + 50 D ouslens — ui) =

(u,i)eD D (u,/)€D u,f

LEere correction term

which indicates that the correction term uses propensity score to estimate how
much Lg;5 overestimates or underestimates L;;.,; and then subtracts it. As a
compromise, the correction term will increase the variance of the DR estimator
according to Theorem 1. Thus, if &, ; is computed in a manner that ensures that

1 A 1— ﬁu.i
T~ E Gu,r’(euJ — Eu,.-') ~ — = 0. (g)
D| 4 p
(u,i)eD

Then the EIB would have small bias and the DR would have small variance.



 Merits of DR-TMLE

Table 2: Comparison of various debiasing estimators

Doubly Robust to Boundedness Without Low
Robust 5Small Propensities Extrapolation Variance
IPS X X X v X
SNIPS 4 o v v X
EIB ¥ v v X v
DR v * * o o
DR-TMLE v v v o v

MNote: symbols v, 0 and x denotes good, medium and bad, respectively.

« Some may argue that the constraint (9) may degrade the accuracy of é, ;.

* By leveraging the targeted maximum likelihood estimation (TMLE) technique,
DR-TMLE obtain an estimate of é, ; that satisfies equation (9), without

sacrificing the accuracy of error imputation model.



 TMLE Technique

Assume the error imputation model can be presented as
= plhg(xu,i)},
where h is an arbitrary function, ¢ is a known function, such as identity, sigmoid.

The basic idea of TMLE consists of two steps:
« Step 1 (Initialization): pre-train an initial imputation estimator, denoted as

(O

& = w{ﬁ“’?(xu )}

« Step 2 (Targeting): update e by fitting an extended one-parameter model

ess"(m) = {9 (xu,1) + n(1/pu,; — 1)}
The DR-TMLE estimator is given as

Lor_tmie = [D|™* Z [ i+ oy i(eyi — ”EW)E’F'U;]
(w,i)eD



 TMLE Technique

* It can be shown that the TMLE technique would ensure that é; /" satisfies
equation (9).

« Since the targeting step updates the imputation model by adding an error
correction term — — 1 to approximate e, ; better and hence does not sacrifice

pul

the accuracy of imputation model.



Collaborative Targeted Learning

« DR-TMLE requires a pre-trained propensity model, however, a concern is that if
py.i IS Inaccurate, the targeting step in TMLE cannot be guaranteed to provide a

correct direction of debiasing and variance-reduction.

* To cope with the problem, a novel TMLE-based collaborative targeted learning
approach (TMLE-TL) was developed, which pursues an optimal strategy for
estimation of the propensity score and error imputation model.

Peng Wu, Haoxuan Li, Yan Lyu & Xiao-Hua Zhou (2022), ‘Doubly Robust Collaborative Targeted Learning for Recommendation on Data
Missing Not at Random’, arXiv:2203.10258.



Numeric Experiments

Table 3: MSE, AUC, NDCG@5, and NDCG@ 10 on the MAR test set of COAT and YAHOO.
We bold the outperforming models for each evaluation metrics. The proposed TMLE methods
implemented by single-step are marked with x and collaborative targeted learning are marked with 7.

COAT YAHOO
MSE AUC NDCG@5 NDCG@I10 MSE AUC NDCG@5 NDCG@I10
Base Model 0.2448  0.7047 0.5912 0.6667 0.2496  0.6699 0.6347 0.7636
+ IPS 0.2304  0.6985 0.5980 0.6749 0.2501 0.6845 0.6449 0.7697
+ SNIPS 0.2410  0.7066 0.5978 0.6761 0.2502  0.6867 0.6509 0.7724
+ DR 0.2359  0.7031 0.6213 0.6967 0.2420  0.6867 0.6613 0.7791
+ DR-JL 0.2365 0.7039 0.6063 0.6857 0.2500  0.6850 0.6414 0.7673
+ DR-TL 0.2349  0.7102 0.6253 0.6933 0.2494  0.6808 0.6334 0.7622
+ DR-TMLE = 0.2161 0.7170 0.6348 0.6999 0.2115  0.7044 0.7008 0.8016
+ DR-TMLE-]JL * 0.2151 0.7236 0.6388 0.7047 0.2577  0.7036 0.6786 0.7884
+ DR-TMLE-TL t 0.2119  0.7339 0.6526 0.7112 0.2472  0.7057 0.6758 0.7871
+ MRDR-IL 0.2160  0.7203 0.6406 0.7035 0.2496  0.6842 0.6487 0.7717
+ MRDR-TL 0.2155 0.7200 0.6427 0.7047 0.2494  0.6805 0.6345 0.7623
+ MRDR-TMLE-]JL * 0.2114  0.7278 0.6498 0.7101 0.2557  0.7036 0.6785 0.7884
+ MRDR-TMLE-TL 7 0.2114  0.7316 0.6428 0.7088 0.2473  0.7060 0.6803 0.7902
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* Multi-Task Learning

A typical e-commerce transaction has the following sequential events:

Xy i Multiple Tasks:

]

@ Post-view click-through rate: take o, ; as treatment,

P(cy,i(1) = 1|xy,i) = P(cu,i = 1xy,i, 0u,i = 1)
Y

Ou,j — Cy,| e [y

@ Post-click conversion rate: take ¢, ; as treatment

@ o,: o, =1 Iif item | is exposed to u; o, = 0 otherwise. P(r, (1) =1|x,;) = P(r,; = 1|x,i, cpi = 1)
@ ¢, ¢, = 1if uclicks on item /; ¢,; = 0 otherwise. =P(ryi = 1|xy,5,04i =1,c4i = 1)

@ r,i: r,i = 1if user u purchases item i; r,; = 0 otherwise. The last equation holds if ¢, ; =1 = o,; = 1.

46



* Multi-Task Learning: Multi-IPS

The Multi-IPS estimator is given as

)

. 1 CuiL(ruis f(Xui; @, @
Lmuii.ips (0,1, P) = = Z é _('x(__;? ) )

D]

(u,i)eD

@ Pu.i= Pu.i(Xui;n, P) is the propensity score model, i.e., post-view
click-through rate prediction model.

@ 7y = f(xyi; ¢, D) is the post-click conversion rate prediction model.

@ & represents the shared embedding parameters.

Wenhao Zhang, Wentian Bao, Xiao-Yang Liu, Keping Yang, Quan Lin, Hong Wen, Ramin Ramezani (2020), “Large-scale
Causal Approaches to Debiasing Post-click Conversion Rate Estimation with Multi-task Learning”. WWW
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* Multi-Task Learning: Multi-IPS

Auxiliary Tasks

eEEsEsEssssssEssssssssssssEmEmsEssssss,

Main Task

Fo T T ETEEEEEEEEEEEEEEE TS EEEEEEE T TN

O pcrCVR

element-wise X

—— = o o mm m m m mm mm mm mm mm m
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 Intuition of Parameter Sharing

« Training samples with all exposures for pCTR task is relatively much richer than
PCVR task.

« Thus, parameter sharing mechanism enables pCVR network to learn from un-
clicked exposures and provides great help for alleviating the data sparsity
trouble.

Wenhao Zhang, Wentian Bao, Xiao-Yang Liu, Keping Yang, Quan Lin, Hong Wen, Ramin Ramezani (2020), “Large-scale
Causal Approaches to Debiasing Post-click Conversion Rate Estimation with Multi-task Learning”. WWW



* Multi-Task Learning: Multi-DR

The Multi-DR estimator is given as

| 1
ﬁMufrf.DR(¢= Uk ¢'] — ﬁ Z {guJ(xu,i; H: Cb]
(u,NeD
Cui (L(-rm':v f(xu,.-'; Cl) d))) o gu,f(xu,i; 9 Cb]) }

—|_ M
Pu,f(xu,f; 1, ¢’)

@ g,i(xyi;0,®) is the error imputation model.

@ Pui= Pui(Xui;n, ) is the propensity score model, i.e., post-view
click-through rate prediction model.

@ fyi=f(xui; ¢, P)is the post-click conversion rate prediction model.

@ O represents the shared embedding parameters among CTR task, CVR task,

and imputation task.
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Uniform Data-Aware Methods
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* Estimation of Propensity Score

@ Without using uniform dataset: Logistic regression or matrix factorization,

pu,i — IP(D”’; =1 | Xu?f):-

l.e., estimating o, ; using Xy ;.

@ Using a small uniform dataset: Naive Bayes

Pu,i = IP:’(DU!,' =1 | Xu,i rﬂ,f(l)) — IP(;{ e (1))

o P(xy..rui(1)) can be trained with uniform data;
o P(ry.i(1) | Xu,i,oui=1)and P(o,; =1,x,,) can be obtained by using
the biased data.

P(ru,i(1) [ Xu,is 0ui = 1) - P(ou,i = 1, Xu,i)
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* Characters of Biased Data and Unbiased Data
@ Biased data Dg:

e large sample size;
@ it is inevitable to suffer from various biases.

@ Unbiased data Dyy:

e no bias

e it is a gold standard for evaluating the deibasing approaches.

e small sample size, since it is costly to collect unbiased samples through
uniform policy.

Only using the unbiased ratings to train the rating model may cause severe
overfitting due to the small sample size.

A compromised and pragmatic method is to combine two dataset: a big biased
observed ratings and a small unbiased ratings.
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* Intuition of Combining Biased Data and Unbiased Data

« A natural guestion is: whether the unbiased data is helpful to improve the quality
of recommendations?

 Intuitively, the unbiased data provides a better way to evaluate the resulting
recommendation model, and hence it may give a better optimizing direction for
training the model parameters.

« The key point is how to use the unbiased data.

* In general, the unbiased data are applied to obtain better propensity score
model or error imputation model.



* Bi-Level Optimization

« Wang et al. (2021) use the unbiased data to train the propensity score model,

parameterized with n, such that the recommendation model performs well on the
unbiased data.

« Formally, this goal can be formulated as a Bi-level optimization problem
n* = argmin L(¢*(n); Dy)
n

s.t. ¢*(n)= arg m(:!n L(o,n;,Dgr).

where

‘C(O* (T?); DH) — Z [ru:f — fqh*[?;r}(xu,i))z:
(u,i)yeDyy
L(¢,n; D) can be chosen as the same form of IPS estimator or DR estimator.

Xiaojie Wang, Rui Zhang, Yu Sun, Jianzhong Qi (2021), “Combating Selection Biases in Recommender Systems with a Few
Unbiased Ratings”, WSDM. 55



AutoDebias

« AutoDebias applys the unbiased data to train the propensity score model and
error imputation model. Thus, it has a more flexile form of L(¢,n; Dg).

’C’({-} . I)B) — Z (WLE?;')GUJEUJ + WIE!E‘;}L(mUJ: ﬁiﬁ(qu))) .
(u,)eDsi

1) . (2)

where w, /., w; "/ and m, ; are three functions modelled with parameter 7,

correspond to the inverse propensity score model and error imputation model.

Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli Lin, Keping Yang (2021), “AutoDebias: Learning

to Debias for Recommendation”. SIGIR.
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Causal Analysis Framework
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e Motivation

« The introduction of causal techniques into recommender systems (RS) has
brought great development to this field and has gradually become a trend.

« Technically speaking, the existence of various biases is the main obstacle to
drawing causal conclusions from observed data. Yet, formal definitions of the
biases in RS are still not clear, which leads to difficulty in discussing theoretical
properties and limitations of various debiasing approaches.

« This greatly hinder the development of RS.

Jiawei Chen and Hande Dong and Xiang Wang and Fuli Feng and Meng Wang and Xiangnan He (2020), ' Bias and Debias in
Recommender System: A Survey and Future Directions’, arXiv:2010.03240.

Peng Wu, Haoxuan Li, Yuhao Deng, Wenjie Hu, Quanyu Dai, Zhenhua Dong, Jie Sun, Rui Zhang, Xiao-Hua Zhou (2021), "Causal
Analysis Framework for Recommendation®”, arXiv:2201.06716. (To appear in 1J-CAl)



« Goal

Inference
Selection bias

Conformity Bias "-,I-" Noncompliance

Expc_:s.ure B_'HS ] Interference bias
\ PDE't"?" B"_"'S I\ Unmeasured confounding
" Inductive Bias A

_ _ Confounding bias
\ Popularity Bias /o

H“‘m / . aaamas L
.

@ Provide formal definitions of various biases in RS.

,f/ Biases in RS \ / Biases in Causal \

/
i

y

) - Selection bias
\ / Model assumption /
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e Blases in Causal Inference

PO framework

Assumptions

Assumptions

Scientific question Causal estimand Data

Identifiability/
Recoverability

w@ Models

N

Conclusions

We need a variety of assumptions to climb from association (data) to causality
(causal conclusions), violating these assumptions may result in various biases.



e Conclusions

Table 3: New perspective of biases in RS.

Assumptions Biases in causal inference Biases in RS
Define causal estimands SUTVA(a) .undeﬁned : pﬂSitiﬂl‘l.biHS.

SUTVA(b) interference bias conformity bias

consistency noncompliance undefined

positivity undefined exposure bias
Recoverability exchangeability confounding bias popularity bias

conditional exchangeability hidden confounding bias undefined

random sampling selection bias user selection bias, exposure bias
Model model specification model mis-specification inductive bias

« According to Table 1, we can define the descriptive biases in RS formally using the
rigorous syntax of causal inference.

It also provides an opportunity to apply the existing causal inference methods to
RS.

 In addition, for the unigue characteristics of RS, we expect that a series of new
methods will be developed by weakening or substituting the assumptions.

Jiawei Chen and Hande Dong and Xiang Wang and Fuli Feng and Meng Wang and Xiangnan He (2020), ’ Bias and Debias in Recommender System:
A Survey and Future Directions’, arXiv:2010.03240.

Peng Wu, Haoxuan Li, Yuhao Deng, Wenjie Hu, Quanyu Dai, Zhenhua Dong, Jie Sun, Rui Zhang, Xiao-Hua Zhou (2021), "Causal Analysis Framework for
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* Structural causal model-based recommendation
* Introduction (Yang Zhang)
* Confounding and colliding in recommendation (Yang Zhang)
* Counterfactual recommendation (VWenjie Wang)



Structural Causal Model

* How to express mathematically some common understandings, such as

symptoms do not cause diseases?

€x €y
X: disease Y: symptom To express the o :
X = UX inherent directionality * v
_ o ]

Uy and Uy: exogenous

Causal diagrams encodes causal assumption via missing arrows,

* The straightforward generalization

Causal Graph / Causal Diagram

representing claims of zero influences

Uz Ux Uy
: : : Non-parametric
* * * interpretation
b - e
Z X Y

Z = f7(Ugz)
X = fx(Z,Uy)
Y = fy (X, Uy)

Pearl, Judea. "Causal inference." Causality: objectives and assessment (2010): 39-58.



Structural Causal Model

* Causal graph is important
Try to compute the expected effect of setting X to x,, denoted as E(Y|do(X = x,))

(oJZ U.X yY UZ UX UY 7 = U

: : : setting X to xg T . ¢ T v IZ( Z)

Y Y Y do(X =x0) 0 = Xy

o o - * \. ._FY Y = fY (X, UY)
Z X Y 7 Y v

« According to the graph, we have
E(Y|do(X = xy)) = E(Y|x), regardless what {f;, fx, fy} is.

* The right hand side is estimable from the distribution of observed variables, i.e., P(x, y, z),

The causal graph encodes most causal assumptions between variables, the form of {f ()} could be
unknown.

Pearl, Judea. "Causal inference." Causality: objectives and assessment (2010): 39-58.



Structural Causal Model

* Basic causal structure in causal graph

Chain

\' /i//

Z: mediator

e X and Y are associated.
e conditiononZ, X andY
are independent

Confounding

Z: confounder

X does not affect Y, but X and Y
are correlated. Spurious correlations.

conditionon Z, X and Y are

independent, blocking the spurious

correlations.

Colliding

Z: collider

X and Y are independent.
Conditionon Z, X and Y are
correlated, bringing spurious
correlations.
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Structural Causal Model

 Correlation is not causation

Confounders and controlling colliders would bring E
spurious correlations between treatment and outcome.

It is impossible to answer causal question with
correlation-level tools

* SCM provides do-calculus

It provides various principles to identify target causal effect.
For example, utilize the backdoor adjustment when confounders exist

If no node in Z is a descendant of X, and blocks every path
between X and Y that contains an arrow into X (backdoor

path), then the average causal effect:
P(Y|do(X)) = X, P(Y|X,Z)P(Z)

Confounder E,Z,A will bring
spurious correlation

V4

S< o
hq

P(Y|do(X)) = z P(Y|X, 2, a)P(z, a)



Structural Causal Model

* SCM provides both a mathematical foundation and a friendly calculus
for the analysis of causes and counterfactuals.
* |t can deal with the estimation of three types of causal queries:

O Queries about the effect of potential interventions.

To compute causal effect, e.g., P(Y|do(X))
0 Queries about counterfactuals.

e.g., whether event A would occur had event B been different!
O Queries about the direct / indirect effects. (based on counterfactuals)

Z

the direct effectsof XonY:. X ->Y
the indirect effectsof X onY: X > Z > Y




Recommendation based on SCM

QI: Queries about
causal effect.

Deal with

Q2: Queries about
counterfactuals.

Q3: Queries about the
direct/indirect effects.

confounding/colliding

answer

\ 4

De-biasing via deconfounding
O Observed confounding bias
0 Unobserved confounding bias

\ 4

Utilize colliding structure
O Disentangle
O Model retraining

Causal queries

counterfactual questions

\ 4

Counterfactual inference:

O (in)direct effect for debiasing
O data argumentation

O fairness

O explanation

Recommendation




Recommendation based on SCM

* Dealing with confounding structures in recommendation (Yang Zhang)
* Confounding in recommendation.
* Deal with observed confounders.
* Deal with unobserved confounders.

* Considering colliding structures in recommendation (Yang Zhang)
* Colliders in recommendation
* Modeling the colliding effect

* Counterfactual recommendation (VVenjie VWang)
* Counterfactual inference for recommendation
* Counterfactual data augmentation
* Counterfactual fairness
* Counterfactual explanation



Recommendation based on SCM

* Dealing with confounding structures in recommendation
* Confounding in recommendation.

Deal with observed confounders.
 Deal with unobserved confounders.



Confounding in recommendation

e Are there confounders in recommendation?

* There are some possible examples

algorithm N
quality brand strategy  Position
price click ltem features click exposed item click

* What’s more, some confounder are observable/measurable, some confounder are
unobservable/unmeasurable.
e.g., company is measurable, quality is unmeasurable.



Confounding in recommendation

s it necessary to deal with confounding effects?

* The goal of recommendation: estimate user preference. But user preference is
implicit.

* We estimate itas P(Y|U, I), i.e., taking the correlations between (U,l) pair and
click Y as the preference.

U

* However, when there are confounders between U/l and Y(red line), the confounding
effect will also manifest as correlations, while it cannot reflect user preference.

Thus, we need to deal with the confounding problem in recommendation!

Next, we will show how to deal with confounding problem.
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Existing work regarding observed confounders

* Existing work

The backdoor adjustment is obvious selection, and most work is based on it.

2021 SIGIR&KDD 2021 CIKM 2022
® ® ®
* Zhang et.al. PDA « Gupta et.al. CauSeR * Zhang et.al. DCR
* Wang et.al. DecRS * Woang et.al. CaDSI

* Yang et.al. DCM

The above work considers different problems caused by confounder, and
has different strategies to implement the backdoor adjustment.



PDA: Confounding view of the popularity bias
* Popularity bias

* Favor a few popular items while not giving deserved attention to the
majority of others

* The popular items are recommended even more frequently than their
popularity would warrant, amplifying long-tail effects.

* Previous methods ignore the underline causal mechanism and blindly
remove bias to purchase an even distribution.

* But, not all popularity biases data are bad.

* Some items have higher popularity because of better quality.
* Some platforms have the need of introducing desired bias (promoting the items
that have the potential to be popular in the future).

Zhang et al. SIGIR 2021. Causal Intervention for Leveraging Popularity Bias in Recommendation 74



PDA: Confounding view of the popularity bias
* What is the bad effect of popularity bias? ,
U: user; I: exposed item;

e Common causal assumption C: interaction label
* (U,I) — C: user-item matching affects click.
* |tem popularity also has influence on the |
recommendation process, but is not considered. C

* Cofounding view u

* Z - I: Popularity affects item exposure. _
« Z - C: Popularity affects click probability. Z : item pop
* Z is a confounder, bringing spurious (bad effect)

correlation between [ and C. )
* Take the causation P(C|do(U,I)), instead of the

correlation P(C|U, I), as user preference.

U

: : , Bad effect
Causation (backdoor adjustment): Correlation:
P(Cldo(U,D) =%, P(C|U,1,Z2)P(Z) P(CIU,I) =Xz P(C|U, 1, Z)P(Z|D)
o 2., P(CU, I, Z)PUNZ)P (Z)

Zhang et al. SIGIR 2021. Causal Intervention for Leveraging Popularity Bias in Recommendation



PDA: Confounding view of the popularity bias

* Training & Inference: Popularity De-confounding (PD, remove bad effect)

7 » Toestimate  P(Cldo(U,1)) = » P(C|U,1,2)P(z)
do(U,))
> Step I.Estimate P(C|U,LZ)
I - Po(c = 1|u,i,m}) = fo(u, i) x mf
- m! the popularity of item i in timestamp t
l
C - Learn with traditional loss
U » Step 2. Compute P(C|do(U, 1))

- >.,P(C|U,I,Z)P(Z) x fo(u,i)
- Derivation sees the paper

* Another Inference: Popularity Adjusting (inject desired popularity bias)
> Inject the desired pop bias Z by causal intervention

P(Cldo(U,I),do(Z = 2)) —) fe(u,i) xm;

Zhang et al. SIGIR 2021. Causal Intervention for Leveraging Popularity Bias in Recommendation 76



DecRS: De-confounding for Alleviating Bias Amplification

* Bias amplification:
* What s it! * Why!

Action movie Romance movie ° An item Wlth IOW ratin g Majority group Minority group
User b ing hi . . e e
2% receives a higher prediction N
- 7 score because it belongs to 4
¢ . . g E 0.76
Bias amplification Recommender Feedback|loop the malor":)’ grOUP- g 47
‘L o .
. . . . Q
RGO * Intuitively, we can know that S \
> 90% 10% . 3 —
l the user representatlon 4 5 ratings
User feedback ———— sh OWS‘. §tronge rp reference (b) Prediction score difference between the items
o majority group. in the majority and minority groups over ML-1M.

(a) An example of bias amplification.

Action movie of user u over item groups. Romance movie

Underwater (2020) Pu(n) Historical distribution m Marriage Story (2019)
Rating by user u: 5.0/5.0

over-recommend items in the

Rating by user u: 3.0/5.0

m aj o) rit)’ g rou P 9192 item groups Mariage Story
Item representation User representation Item representation
Interaction = Interaction
u module - module e
Rating by user u: 3.0 < 5.0 ~|r
0.6 Prediction score: 0.6 > 0.5 0.5

(c) An example on the cause of bias amplification.

Wang et al. SIGKDD 2021. Deconfounded recommendation for alleviating bias amplification. 77



DecRS: De-confounding for Alleviating Bias Amplification

* A Causal view of bias amplification

e : 3 * D: user historical distribution over item group. d, =
D ! U User representation
I Item representation [pu(gl)’ - pu(gN)]’ e.g., du — [08, 02]
M p User historical distribution . . . .
over item groups * M: to describe how much the user likes different item
M Group-level user representation groups, decided b)’ D and U.
U Y Y Prediction score * (UM)—->Y: anitemican have a high Y because: I)
(@) ’ user’s pure preference over the item (U — Y) or 2) the

user shows interest in the item group (U > M - Y).

v D is a confounder between U and Y, bringing spurious correlations : given the item i in a group g, the
more superior g is in u’s history, the higher the prediction score Y becomes.

* Backdoor adjustment
P(Y|U =u,I =) P(Y|do(U =u),I =1i)

_ Zden Zmem P()P(u|d)P(m|d, ) POP(Y|u,im) - Z P(d|do(U = u))P(Y|do(U = u),i,M(d,do(U = u))) (2a)
: (1a)
P(u)P(i) s
= d;) m;M P(d|u)P(m|d,u)P(Y|u,i,m) (1b) ‘ — Z P(d)P(Y|do(U = u),i, M(d, do(U = u))) (2b)
= " P(dlu)P(Y|u, i, M(d,u) (1c) deD
e = > |P(d)P(Y|u,i,M(d,u)), (2¢)
= P(dy|u)P(Y|u, i, M(d,, u)), (1d) dedr

78
Wang et al. SIGKDD 2021. Deconfounded recommendation for alleviating bias amplification.



DecRS: De-confounding for Alleviating Bias Amplification

* Deconfounded Recommender System (DecRS)
* To implement:

P(Y|do(U = u),1 = i) = $4ep PP (Y|, i, M(d,w) (@

4

1

Pu(g2),
Romance movie

0.6 -5 0.
Challenge: the sample space of D is infinite. N (I
: N\
. . e 02 oo [, N
* Backdoor adjustment approximation: 02 | N
(1) Sampling distributions to represent D; e

Use function f () (FM) to calculate P(Y|u, i, M(d, u)).

PY|ldo(U=uw),l =i) =}, ~P(@)P(Y|uiM(d u))

®' (d)f (w, i, M(d, u))

(2) Approximation of E4[f(-)].
*  Expectation of function f(°) of d in Eq.4 is hard to compute /" @~ 9%

f(x) + (1 —a)f(xz)
because we need to calculate the results of f( ) for each d.
Jensen’s inequality: take the sum into the function f( ).

~

A

(4)

Action movie

Infinite Sample Space

learn it with data

P(Yldo(U =w),I =) ~ f(w i M( ) P(dd.u). | g

deD

Different to PDA, the learn one directly represents the target casual effect.
Wang et al. SIGKDD 2021. Deconfounded recommendation for alleviating bias amplification.

A 4

X ax;+(1—-a)x; Xy

Approximation
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Existing Work for Unobserved Confounders

* The methods based on backdoor adjustment need the confounders could be
observable and controllable.

e However, unobserved/unmeasurable/uncontrollable confounders exist in
recommendation. How to deal with them!?

* There are two lines of work:

a

2022 arxiv ‘ Zhu et.al. Deep-Deconf

Early 2022 ¢  Zhu et.al. HCR
Late 2021 Xu et.al. DCCF

2020 NeurlPS 4 Wangetal DCF
2020 RecSys Zhou et.al. VSR

Front-door adjustment Learning substitutes



HCR: The Front-door Adjustment-based Method

* Source of confounding bias is the confounder that affects item
attributes and user feedback simultaneously.

* Some confounders are hard to measure. [ Qurity ]
* Technical difficulties, privacy restrictions, etc. /\
* E.g., product quality.
. : Positive
. . . [ngh Price -——=== Ratings J
* Removing hidden confounders is hard: Spurious

correlations

* Inverse Propensity Weighting
* Based on strict assumption of no hidden confounder.
* Backdoor Adjustment

* Require the confounder’s distribution.

Xinyuan Zhu et.al. “Mitigating Hidden Confounding Effects for Causal Recommendation” in 2022. 81



HCR: The Front-door Adjustment-based Method

* Abstract user feedback generation process into causal graph.
* V:hidden confounder; L: like feedback; I: item; U: user.

* M: a set of variables that act as mediators between {U, I} and L, e.g., user-item
feature matching, and click. @ V)

ke o0 o
* Block the backdoor path [ « V — L (OD—M—0 TF—M—O

e Estimate the causal effectof  on L, i.e.,

P(L|U,do(D)). 8 {0

* Hidden Confounder Removal (HCR) framework.

* Front-door adjustment
* decompose causal effect of [ on L into: |) the effects of I on M and 2) the

effect of M on L.
P (L|U,do (1)) = Yy P (M|U,do(I))P(L|U,do(M))

= Xy P (MU, D) %, P ()P (LIM,U,I')

Xinyuan Zhu et.al. “Mitigating Hidden Confounding Effects for Causal Recommendation” in 2022. 82



HCR: The Front-door Adjustment-based Method

* Hidden Confounder Removal (HCR) framework
« P(Lldo(I),U) =
YuP M|U,DY,PU)P(LIUIT, M) O 0
* Multi-task learning
e Learns P(M|U,I) == f,,,(U,I)

e Learn RM() P(l|u do(i)) RLU
P(L|IM,U,I) :==h(U,I,M)
— hl(U, M)hz (U, II) [fm(“u, [) Inference | Lh(u,“l, m)]
° |nfe|~ence i Backbone ) Backbone
o Infer P(M|U,I) and P(L|U, I, M) Mo Mode
e Get rid of the sum over I and obtain L C_D_O_O_S_O_O_ ] _O_O_C_D _0_0_2 J
P (L | U, do (I)) :_ Shared Embedding Layer :

— ZMfm(U: I) 21’ P(I,)hl(U; M)hZ(U;I,)
= Yu fm(U, DR (U, M) 3., P(I")R*(U, 1)
= Sy 2m fm (U, DR (U, M)



Learning Substitutes-based Method

* Multiple causes assumption for recommendation:

* multiple causes: each user’s binary exposure to an item a,; is a cause(treatment), thus there are
multiple causes.

* There are multiple-cause confounders (confounders that affect ratings and many causes).

* Single-cause confounders (confounders that affect ratings and only one cause) are negligible.

User u @ Single-cause
. __/ confounders

DO 00 OO -0

Exposures a, Ratings ry

Multi-cause
confounders

Wang et al. RecSys 2020. Causal inference for recommender system.
Zhu et.al. Arxiv 2022. Deep causal reasoning for recommendations.



Learning Substitutes-based Method

- S O O S D D D D D D D D D D S D O D D D S D D O S S S O

* Learning substitutes to deconfounding:

Multi-cause
confounders

Substitute
confounders

Contradiction: assume p(ayq, ---, Gum|Zy) = I1; p(ay;ilzy), if there is ®®' . .®® ®@° ) '@@

a multi-cause confounder, the conditional independence cannot hold.  L____ Exposuresa, _ ___________ Ratingsfu ____ !

|
|
|
Key: if Z,, renders the a,;’s conditionally independent i
then there cannot be another multi-cause confounder !
l
|
|

* Step |: learning substitutes ¢ Step 2: deconfounded recommender

Finding a Zy, such that: Control the substitutes to fit

p(aul; ey aumlzu) — Hip(auilzu) recommender model

Example: Example:

find a generative model: y,:(a) = 0T BL - a+ vy - 7y + €y
— m
Po(AulZy) = 11iZ1 Bern(ay|6(z.):) where 8,, and B; refer user preference and

then: item attributes, respectively.
find qp(Z,|A,) With variation-inference

Wang et al. RecSys 2020. Causal inference for recommender system.
Wang et.al. J Am Stat Assoc 2019. The blessings of multiple causes.
Zhu et.al. Arxiv 2022. Deep causal reasoning for recommendations. 85



Papers for confounding in recommendation

Zhang, Yang, et al. "Causal intervention for leveraging popularity bias in recommendation." Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.
2021. (Zhang et.al. PDA)

Wang, Wenijie, et al. "Deconfounded recommendation for alleviating bias amplification." Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021. (wang et.al. DecSR)
Wang, Xiangmeng, et al. "Causal Disentanglement for Semantics-Aware Intent Learning in
Recommendation." IEEE Transactions on Knowledge and Data Engineering (2022). (Wang et.al. CaDSI)
Gupta, Priyanka, et al. "CauSeR: Causal Session-based Recommendations for Handling Popularity Bias."
Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 2021.
(Gupta et.al., CauSeR)

Yang, Xun, et al. "Deconfounded video moment retrieval with causal intervention." Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021. (Yang
et.al. DCM)

Wang, Yixin, et al. "Causal inference for recommender systems." Fourteenth ACM Conference on
Recommender Systems. 2020. (Wang et.al. DCF)



Recommendation based on SCM

* Considering colliding structures in recommendation
* Colliders in recommendation
* Modeling the colliding effect



Colliders in Recommendation

* Are there colliders in recommendation?

* There are variables affected by many factors. Such as, the happening of clicking is affected by
user preference and the exposure position.

* Existing work also tries to construct colliders manually.

Xl X2
* To utilize or eliminate colliding effects!?

* Assume that we have known X, try to estimate Xj;.

* Condition on Z, X; and X, could be correlated.

* That means condition on Z, X, would provide us more 7
information to estimate Xj.

In recommendation, we usually face with this case (know X,
and Z to predict X;). Thus existing work based on SCM tries
to utilize colliding effects to better learn some targets.




DICE: Colliding Effects for Disentangling True Interest

* What are causes of a user-item interaction (click)?

: . — buy buy .
Two main causes: User | 8z _K’ User 2
* |nterest
* Conformity a best-seller

. high sales -
User tend to follow the mainstream 8 tire, speed,

* Disentangle Interest and Conformity to identify true interest.

* But it is hard because of lacking ground-truth. (An interaction can come from either factor
or both factors)

* Colliding effect can come to help:

Interest  Popularity
* Interest and Popularity (conformity) are independent

* But, they are correlated given clicks:
A click on less popular item = High Interest

click
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DICE: Colliding Effects for Disentangling True Interest
v X

* Partial pairwise data identifies true interest: .
Interest Popularity

» 01:{<u, pos_item, neg_item>, wherein pos_item is less
popular than neg_item}

» Pairwise cause-specific data (interst-driven): we can
ascertain that the interaction is more likely due to user
interest

* Solution:

click

: interest : | interest e Key?: | .
E embedding : loss . €y4: learning .
nladir - fnbaledeleiele - ubakeiek interest embedding
. 1 8 I ke : interest-driven
| i on in -
discrepancy — o N l | click g
l0Ss user 'tim >, P4 e pairwise data (0,).
F Y | & - ##- i i
ey S - Y.
: conformity : _| conformity
! embedding ! | Joss

* Keyl: Split user/item representation into two embeddings
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Colliding Effects for Incremental Training
* Incremental training for recommender system

Usually, using the incremental interaction data I; for efficient retraining.
Only updating the representations of active user/item corresponding to ;.
lgnoring the representations of inactive user/item.

RIn,t—l RIn,t
R, +—1 : Representations of inactivate user/item at time t-1.
, R+ : Representations of inactivate user/item at time t.
t R4c -1 : Representations of activate user/item at time t-1.
R4+ : Representations of activate user/item at time t.
O I;: Incremental interaction data collected from time t-1 to t.
RAC,t—l RAC,t

Causal graph of incremental training

Ding, Sihao, et al. "Causal incremental graph convolution for recommender system retraining.” IEEE TNNLS (2022).



Colliding Effects for Incremental Training

* Causal incremental training with colliding effects

Ripeaq Rin¢ Rint—1 Rin ¢ Rint—1 Rin ¢
O——0 Q—O, O——O
St 1 St 1
I; i Iy
RAc,t—l RAc,t RAC,t—l RAC,t RAC,t—l RAc,t

Building colliding effect

* Creating a collider S; between Ry, and Ry ¢, St is the similarity between representations of active and inactivate user/item.
* Restraining Sy = S;_; to open the causal path I; = Ry, = R, ¢ with the help of colliding effect.

* Using the incremental data I, simultaneously update both R, and Ry, ;.

Ding, Sihao, et al. "Causal incremental graph convolution for recommender system retraining." IEEE TNNLS (2022).



Recommendation based on SCM

e Counterfactual recommendation
* Counterfactual inference for recommendation



e Counterfactual Recommmendation

* Counterfactual inference for recommendation

o Focus on removing path-specific effects for debiasing or OOD generalization

o First estimate the causal effect by comparing a counterfactual world with the factual world,

and then mitigate path-specific effects.

* Representative VWork

Wang, et al. Clicks can be cheating: Counterfactual recommendation for mitigating clickbait issue. In SIGIR 2021.

Wei, et al. Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system. In KDD
2021.

Wang, et.al. Causal representation learning for out-of-distribution recommendation. In WWW 2022.
Wang, et.al. User-controllable recommendation against filter bubbles. In SIGIR 2022.



e Counterfactual Recommmendation

Clickbait Issue

* Itis common that a user is “misled” to click an item by the attractive title/cover.
* Consequently, recommender model will recommend items with attractive exposure features but
disappointing content features frequently.
* Negative effect:
* Unfair to the items with high-quality video content.
* Hurt user’s trust and satisfaction.
* Attractive exposure features (e.g, title/cover) and disappointing content features (e.g., video).

I
Item 1 1 € a0 . .
NASA, SpaceX launch : 5 30 mclick mlike . .. . . .
astronauts from US soll. P £ I I Fig. Statistics of clicks and likes on Tiktok dataset. Partly show
1 S 10 . . . .
' PEI = the wide existence of clickbait issue.
| Item 1 Item 2
CINN & JoPY Y Like : (b) Click/like number of items. 1.0 .,
£
e e e e e e e e e - - —— =
Lo 130 I click o 2
. 1 8 4=
ltem 2 p Inconsistent .(\ (Sparse) | 5 o like g
CNN: UFO foundin  ,/ \ : SRR £ £
Denver, we are NOT alone. / _ 1 FESES S5 100 - 06 5
' 4 | T EE < 2
e Biased recommendation < 5
: < 0.4 3
P £
Dislike 1 2 s50f g
I O =
| Nom % B oo, o 0.2 E
N . T & ,f\f S jin >
Exposure feature lick P Post-click . . ] HHHH " | £
p Clicl Content feature feedback : Unbiased recommendation 0 0.0 ©
(a) Browsing behaViOI'S of users on Tiktok. : (c) Ranking score Of items- 0 005 01 015 0.2 025 03 035 04 045 05 055 06 065 07 075 08 08 09 0951

Like/click ratio

Wang, et al. "Clicks can be cheating: Counterfactual recommendation for mitigating clickbait issue.” SIGIR 2021.



e Counterfactual Recommmendation

¢ Causal Graph

* describe causal relationships E & Exposure foature
. C u
* Exposure features and content features are fused into I Y |1 nemfeature %
item features. ¥ Predicion score
* A direct shortcut from exposure features to the T v T U

. L. . C tional | h (b)Th d | h
prediction score: an item can be recommended purely (@) conventionalcausalgraph  (b) The proposed causal grap

because of its attractive title/cover.

*

e

* Reference situation denotes that the feature . Yuter
L
influence is null.
t ' u t u
“* NDE of exposure features on the prediction score (€) Counterfactual world  (d) The reference situation

Figure 3: The causal graphs for conventional and counterfac-
tual recommendations. * denotes the reference values.

* Estimate natural direct effect (NDE) in a counterfactual
world, which imagines what the prediction score would

Total effect Direct effect Indirect effect
be if the item had only the exposure features.
fom_v—h—@ N s v, @ N v b
< CR inference: SSESE SEESE SEEE
* Reduce the direct effect of exposure features during
inference.
96

Wang, et al. "Clicks can be cheating: Counterfactual recommendation for mitigating clickbait issue.” SIGIR 2021.



e Counterfactual Recommmendation

Table 2: Top-K recommendation performance of compared methods on Tiktok and Adressa. ZImprove. denotes the relative
performance improvement of CR over NT. The best results are highlighted in bold. Stars and underlines denote the best results

of the baselines with and without using additional post-click feedback during training, respectively.

Dataset Tiktok Adressa
Metric | P@10 R@10 N@10 | P@20 R@20 N@20 | P@10 R@10 N@10 | P@20 R@20 N@20
NT [50] | 0.0256 0.0357 00333 | 00231 0.0635 0.0430 | 0.0501 0.0975 0.0817 | 0.0415 0.1612  0.1059
wio post-clic{ CFT [50] | 0.0253 00356 0.0339 | 0.0226 0.0628 00437 | 0.0482 0.0942 0.0780 | 0.0405 0.1573  0.1021
feedback IPW [27] | 0.0230 0.0334 00314 | 00210 0.0582 0.0406 | 0.0419 0.0804 0.0663 | 0.0361 0.1378  0.0883
- (CT[50] |00217 00295 0.0294 | 00194 0.0520 0.0372 | 0.0493 0.0951 0.0799 | 0.0418" 0.1611  0.1051
]Yé’e%%j;'mk { NR[51] | 00239 0.0346 0.0329 | 0.0216 0.0605 00424 | 0.0499 0.0970 0.0814 | 0.0415 0.1610  0.1058
RR 0.0264* 0.0383* 0.0367* | 0.0231* 0.0635* 0.0430* | 0.0521* 0.1007* 0.0831* | 0.0415 0.1612* 0.1059*
CR 0.0269 0.0393 0.0370 | 0.0242 0.0683 0.0476 | 0.0532 0.1045 0.0878 | 0.0439 0.1712 0.1133
%lmprove. | 5.08%  10.08% 11.11% | 476%  7.56%  10.70% | 6.19%  7.18%  7.47% | 578%  6.20%  6.99%

Evaluation: evaluate the performance by post-click feedback (e.g., rating).
Observations:

CFT and IPVWV perform worse than NT.
Post-click feedback could be helpful based on the performance of RR.
Proposed CR inference significantly recommends more satisfying items by mitigating clickbait issue.

Wang, et al. "Clicks can be cheating: Counterfactual recommendation for mitigating clickbait issue.” SIGIR 2021.
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e Counterfactual Recommmendation

Popularity Bias in Recsys

* Popularity bias # Uneven popularity distribution

* The popular items are recommended even more frequently than their popularity
would warrant, amplifying long-tail effects.

* Favor a few popular items while not giving deserved attention to the majority of
others.

* From data perspective:

1750 —— Click Count
—.- Cumulative Ratio | *° 20000 1.0
1500 - = °© O
" 0.8 E 4 0.8 ‘(B' H M M M
£ 1o E  Eum g  Long-tail distribution
8 1000 - 0.6 g 8 L 0.6 2
= 10000 | / o
X 750 © 5 ©
= 0.4 3 = Lo.4a 3
o 500 g ot 50001 | g
250 - 02O Lo2 O
0- — o i

i :
+ - - + T - - 0.0 + T T ™ - ™ 0.0
20000 40000 60000 80000 100000 120000 0 50 10000 15000 20000 25000
Item Item

: 20% Douban
20% Kwai o8

Wei et al. Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System. In KDD 2021.



e Counterfactual Recommmendation

* Causal View of Popularity Bias

Common Recommender Popularity bias modeling: User-specific modeling:
User-Item Matching Incorporating item popularity Incorporating item popularity &
user activity

* Edge I>R captures popularity bias.
* Edge U—R captures the user sensitive to popularity.

* Solution ldea:
* Train a recommender based on the causal graph via a multi-task learning
* Perform counterfactual inference to eliminate popularity bias (Question to answer:
what would the prediction be if there were only popularity bias? ) 9

Wei et al. Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System. In KDD 2021.



e Counterfactual Recommmendation

Counterfactual Inference to Remove Bias
Question: what the prediction would be if there were no bias?

Factual World 0

Counterfactual World

(original prediction) (block matching to capture bias)
TIE=TE-NDE=Y(U=ul=iK=Ky;) —Y(U=ul=0K=Ky;)
Factual world Counterfactual world

Inference with TIE = 9y, X o(§;) X () - ¢ X a(§;) X o ()
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Wei et al. Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System. In KDD 2021.



e Counterfactual Recommmendation

* Evaluate MACR framework on two base models: MF and LightGCN.
* Testing data is intervened to be uniform.

MF-based LightGCN-based
data Adressa Yelp2018 data Adressa Yelp2018
Recall NDCG Recall NDCG
Metho Sy Recall  NDCG | Recall | NDCG
etho
MF 0.0853 0.0341 0.0060 0.0094
Lgcn 0.0977 | 0.0395 | 0.0044 0.0086

ExpoMF | 0.0896 0.0365 0.0060 0.0093
MF causk | 0.0835 0.0365 0.0051 0.0083
MF_BS 0.0900 0.0377 0.0061 0.0098
MF reg 0.0659 0.0332 0.0050 0.0081
MF_IPS | 0.0964 0.0392 0.0062 0.0100
MACR 0.1090 0.0495 0.0264 0.0192

Lgcn _causk | 0.0823 | 0.0374 | 0.0050 0.0088
Lgcn BS 0.1085 | 0.0469 | 0.0048 0.0088
Lgcn reg | 0.0979 | 0.0390 = 0.0042 = 0.0083
Lgcen IPS | 0.1070 | 0.0468 | 0.0054 0.0090

MACR 0.1273 | 0.0525 | 0.0312 0.0177

Wei et al. Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System. In KDD 2021.



e Counterfactual Recommmendation

Counterfactual inference for OOD recommendation
* Recommender learns user preference from historical interactions.
* However, user representation learning is usually based on the |ID assumption
between the training and testing interactions. |
. U: user; I: 1tem
e OOD recommendation: P(Y = 1|U,I) = P(Y = 1|U,1,E = 1)P(E = 1|U,I) vy yser interaction
1) Shift of P(Y = 1|U, I, E = 1): change of user preference. E: exposure
2) Shift of P(E = 1|U, I): change of recommendation policy (e.g., biased policy).

Focus on the shift of P(Y = 1|U, I, E = 1): change of user preference.
* Observed features, e.g., consumption level, location, age.
* Unobserved features, e.g, changed mood, context factors.

(

!
!
I
i
i
|
|
!
I
!
\ 2

Out-of-date interactions will cause inappropriate OOD recommendations. "
2

Wang, et al. “Causal Representation Learning for Out-of-Distribution Recommendation.” In WWW 2022.



e Counterfactual Recommmendation

Causal OOD recommendation framework

* Propose OOD objective for user representation learning.

* Strong OOD generalization without new interactions.
* Two key considerations:

|) Figure out the mechanism how feature shifts affect user preference.

2) Mitigate the effect of out-of-date interactions.
* Consideration |: use causal graph to inspect interaction generation procedure.
* Formulation of OOD recommendation: P(D|do(E; = e',), E5).

Zy

_______ N ——— it i (i
( 11D enwronment | I 0ooD enwronmentI | l ooD enwronment |

{Income | !

|increases & A

. Become :
i | pregnant | '

—— o — - ——

Out-of-date interactions will cause inappropriate OOD recommendations.

Wang, et al. “Causal Representation Learning for Out-of-Distribution Recommendation.”

E 1 M : Conformity O g

Income

Age

QO |

In WWW 2022.

D

Brand :
Category

Size

A

Preference only
affected by E;.

O Observed variables (‘:\ Unobserved ones

Eq: Observed user features, e.g., age and income.

E;: Unobserved user features, e.g., conformity.
Z1: User preference affected by E and E5,
e.g., preference over price.
Z3: User preference only affected by E5,
e.g., liking an item due to conformity.
D: User interactions, e.g., click or purchase.
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e Counterfactual Recommmendation

Causal OOD recommendation framework
* Leverage VAE framework to model the interaction generation process

|) Encoder: predict the unobserved user features E. E)—(Zy)
2) Decoder: model the causal relations (E1, E;) = (Z1,Z5) = D. o {' ZZ}’)
20 =2

* Consideration 2: mitigate the effect of out-of-date interactions.

e 7, is updated due to do(E; = e}), but Z; is still affected by out-of-date d because d affects e,.
—> User counterfactual inference to mitigate the effect of d on Z;.

D=d do(D=0
€4 €- ' 0( i )
€1 € “— —— ¥ MLP MLP
\ /‘ MLP f5,()] [MLP £4, ()
¥ '
MLP g, () Z Z
‘“‘\-._‘__‘L/
| Pl
v
d d mitigate the &ffect of d on Z’?\M‘:P/
q(ez|d, eq) p(dleq, ez) ;,
(a) Encoder Network. (b) Decoder Network. (a) Abduction, (b) Action. (¢) Prediction,
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e Counterfactual Recommmendation

Table. The comparison of OOD generalization performance without using OOD interactions.

Dataset 0 Synthetic Data Meituan ~ Yelp
IID/OOD tests | 1D [mmmm)  OOD IID Em) 00D D fmmmm)  OOD
Metric R@20  R@10 R@20 N@10 N@20 | R@50 R@50 R@100 N@50 N@100 R@50 | R@50 R@100 N@50 N@100
FM 0.3666 | 0.0572 0.1074 0.0604 0.0792 | 0.0846 | 0.0121 0.0205 0.0043 0.0057 | 0.1228 | 0.0964 0.1389 0.0313 0.0385
NFM 0.3629 | 0.0405 0.0761 0.0438 0.0560 | 0.0825 | 0.0233 0.0354 0.0066 0.0085 | 0.1222 | 0.0829 0.1276 0.0241 0.0316
MultiVAE 0.3693 | 0.0208 0.0408 0.0172 0.0257 | 0.1054 | 0.0238 0.0368 0.0069 0.0091 | 0.1399 | 0.0365 0.0582 0.0118 0.0154
MacridVAE 0.3573 | 0.0231 0.0392 0.0192 0.0262 | 0.1163 | 0.0219 0.0364 0.0067 0.0090 | 0.1526 | 0.0408 0.0634 0.0135 0.0174
MacridVAE+FM | 0.3648 | 0.0463 0.0836 0.0513 0.0643 [0.1219 | 0.0233 0.0364 0.0066 0.0087 | 0.1536 | 0.0407 0.0626 0.0140 0.0178
COR e 0.3628 [ 0.0767 0.1443 0.0804 0.1056| 0.1159 | 0.0368 0.0578 0.0101 0.0135 [0.1539|0.1416 0.1986 0.0500 0.0595
%Improve. -0.57% | 34.09% 34.36% 33.11% 33.33% | -4.92% | 54.62% 57.07% 46.38% 48.35% | 0.20% |46.89% 42.98% 59.74% 54.55%
Synthetic Data Synthetic Data 0.16 Yelp 0.06 Yelp
0.11 0.11 o b———"1T" 1| o0 b-—no—"">""
. 0.09 9 0.09 | 2 0.12 o 0.04
@ o.07 ® 0.07 FM @ 01 ¢ 0.03
g —~NFM a ~NFM g 0.08 FM a8 M
& 0.05 Z 0.05 o« ~NFM Z 0.02 —NEM
«MultivAE +MultiVAE 0.06 :
+MultiVAE +MultiVAE
0.03 =MacridVAE 0.03 =+MacridVAE 0.04 «~MacridVAE 0.01 ~MacridVAE
0.01 =COR 0.01 [ «COR 0.02 =COR 0 =COR
0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%
Ratio Ratio Ratio Ratio

Figure. Fast adaptation performance w.r.t. different proportions of new interactions collected from the OOD environment.
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e Counterfactual Recommmendation

* Counterfactual inference for mitigating filter bubbles

o Filter bubbles in recommendation: continually recommending many homogeneous items,
Isolating users from diverse contents.

o Solution: let users control the filter bubbles by directly adjusting recommendations.

o Two-level user controls regarding either a user or item feature.

o  Fine-grained level: increase the items w.r.t. a specified
user or item feature.
o  For example, “more items liked by young users”.

o  Coarse-grained level: no need to specify the target
user/item group.

Model training

Model inferencel

Recommendations

o  For example, “no bubble w.r.t. my age” Interactions et ection Control —_—

Severity of filter bubbles Us:;f;:tlt;re (F::'a:ger -agi::i:ed A=

o A counterfactual imagination < (topil | e =
= ' time controls | Coarse-grained a

Sjay

o Real-time response to user controls. A
o Need to reduce the effect of historical user T \ / ‘
. User
representatlons._ User feedback <
o  Counterfactual inference.
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Recommendation based on SCM

e Counterfactual recommendation

* Counterfactual data augmentation



e Counterfactual Recommmendation

* Counterfactual data augmentation for alleviating data sparsity

o Generate counterfactual interaction sequences for sequential recommendation.
o Simulate the recommendation process and generate counterfactual samples, including
recommendations and user feedback.
* Representative work

« Zhang, et al. “Causerec: Counterfactual user sequence synthesis for sequential recommendation.” In SIGIR 2021.
* Wang, et al. "Counterfactual data-augmented sequential recommendation." In SIGIR 2021.
* Yang, Mengyue, et al. "Top-N Recommendation with Counterfactual User Preference Simulation." In CIKM 2021.



e Counterfactual Recommmendation

* Counterfactual data augmentation

o Generate counterfactual interaction sequences for sequential recommendation.

‘ ‘NE‘-C]- ‘ < User Modeling |

: Counterfactual Sequential Data

.4 Counterfactual User Sequences

I

I

I

I

~ ~ ! 'y
L SampledSoftmax/BPR Loss . : '[ . . . . Pos.,

I E

AT
2 iy @ O @ O @,
Pq'rdmeners o

Embedding Layer » Identification
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9o

Wang, et al. “Counterfactual data-augmented sequential recommendation.” In
Zhang, et al. “Causerec: Counterfactual user sequence synthesis for sequential SIGIR 2021.
recommendation.” In SIGIR 2021.
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e Counterfactual Recommmendation

* Counterfactual data augmentation

o Simulate the recommendation process and generate counterfactual samples, including
recommendations and user feedback.

1) Learn SCM from observed data to simulate the recommendation process.
2) Conduct intervention on the recommendation list (R) to generate counterfactual samples.
3) Use observed and generated data to train the ranking model.

HOune@ :
(= i< Agent a‘ """""""""" :

s ! )
)@ ®-@ ®.._
R s%a)
: & @ e’ =
Rechmender Ranking 4
s'm;lawr % M;dEI ﬁ ‘—' ﬁ ﬂ ,._- Reward: ranking

model loss

Generated data

Observed data HOG
(a) lllustration of our framework (b) Recommendation as a SCM (c) Random Intervention (d) Learning-based Intervention

Yang, et al. “Top-N Recommendation with Counterfactual User Preference Simulation.” In CIKM 2021. 110



Recommendation based on SCM

e Counterfactual recommendation

 Counterfactual fairness



e Counterfactual Recommmendation

e Counterfactual fairness DEFINITION 1 (COUNTERFACTUALLY FAIR RECOMMENDATION). A

recommender model is counterfactually fair if for any possible user u
with features X = x and Z = z:
o Pursue fair recommendation for the users

with different sensitive attributes (e.g.,

age and gender). for all L and for any value 2’ attainable by Z, where L denotes the
Top-N recommendation list for user u.

P(L;| X=xZ=2)=P(Ly | X=x2Z=2)

o Counterfactual fair recommendation.

o Use adversarial learning to remove the @

sensitive information from user @ @ @

embedding (r,). @ @ .

2y €y @

Ley - MR
t ¢ t U
Cl CZ oo | (y
+ X, and Z, are insensitive and sensitive features of the user u, respectively.
— 13, ©00) * H, is the user interaction history.
Ty A r, (000 RS |—¥ Lgec * 1, is the user embedding.
v » (, is the candidate item set for u.

» S, are the predicted scores over the candidate items.

112
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Recommendation based on SCM

e Counterfactual recommendation

* Counterfactual explanation



e Counterfactual Recommmendation

* Counterfactual explanation

o Generate explanation by counterfactual thinking.

o Find the minimal changes that lead to a different recommendation.

o ldentify the most critical features causing the recommendations.

E
Goodfellas The Godfather Il
e - | Training Prediction-
Misery Schindler’s List
13 3
H
The Godfather Apt Pupil
[ —
User’s Parameters of Recommendation
actions I, neural recommender 6 scores ¥, ;

+ ACCENT ‘

I

You were recommended “The Godfather II” because:
Counterfactual * You liked “Goodfellas”, and
explanation * You liked “The Godfather”.
Otherwise, the recommendation would have been: “Apt Pupil”.

Tran, et al. “Counterfactual Explanations for Neural Recommenders.” In SIGIR 2021.

Recommended items

Screen: 4.5 ! Screen: 5.0
5. Battery: 3.0 Battery: 1.5 ' Battery: 1.5
Price: 3.0 Price: 3.0 Price: 4.5 : Price: 3.5
User Phone A Phone B | PhoneC
Score:42.00 Score:39.00 Score:38.00

What if phone A performs slightly worse (from 3 to 2.1) at the battery aspect?

Screen: 4.0 Screen: 4.5 Screen: 5.0 | Screen: 4.5
Battery: 5.0 Battery: 1.5 Battery: 1.5 . Battery: 2.1
Price: 3.0 Price: 4.5 Price: 3.5 : Price: 3.0
User Phone B Phone C | Phone A*
Score:39.0 Score:38.0 Score:37.50

Tan, et al. “Counterfactual explainable recommendation.” In CIKM 2021.
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Papers for Counterfactual Recommendation

« Wang, et al. Clicks can be cheating: Counterfactual recommendation for mitigating clickbait
iIssue. In SIGIR 2021.

« Weli, et al. Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender
system. In KDD 2021.

« Wang, et.al. Causal representation learning for out-of-distribution recommendation. In WWW 2022.

« Wang, et.al. User-controllable recommendation against filter bubbles. In SIGIR 2022.

« Zhang, et al. “Causerec: Counterfactual user sequence synthesis for sequential
recommendation.” In SIGIR 2021.

« Wang, et al. "Counterfactual data-augmented sequential recommendation." In SIGIR 2021.

« Yang, Mengyue, et al. "Top-N Recommendation with Counterfactual User Preference
Simulation." In CIKM 2021.

« Li, etal. “Towards personalized fairness based on causal notion.” In SIGIR 2021.

« Tran, et al. “Counterfactual Explanations for Neural Recommenders.” In SIGIR 2021.

« Tan, et al. “Counterfactual explainable recommendation.” In CIKM 2021.



 Comparisons between PO and SCM

* Connections

* logically equivalent: most theorem and assumptions can be equally translated.

* SCM

* Intuitive: use causal graph to explicitly describe causal relationships.

* Need more knowledge and assumptions on the causal graph.
+ PO

* Easy to capture some assumptions that can not be naturally represented by DAGs,
such as the identification of the Local Average Treatment Effect (LATE).

An intuitive example:
* To estimate the causal effect of T on Y, SCM might first assume the
relationships between X;, X,, X3, T, and Y, and then SCM can control X;.

@ °‘° @ * PO might directly control X;, X,, and X3 without knowing the fine-grained

causal relationships.



Outline

* Open problems, future directions and conclusions



Summary of Current Causal Recommendation

* Causal recommendation = Better Recommendation
- Debias
- Fairness
- Generalization
- ... (Many other researches, we apologize for not covering all! Kindly let us
know about your work and suggestions: fulifeng93@gmail.com)

Try causal perspective to solve your recommendation problem

* Two frameworks: PO and SCM-based methods
- Causal graph is the key of the SCM-based methods.
- Propensity scores are usually choice in PO-based methods.
- SCM based methods may need more causal assumptions.

How to choose between PO and SCM? Requirements



Open Problems and Future Directions

Causal assumption

Collecting

Modeling

(clicks, rates ...)

Evaluation

User

(Top-N recommendations)
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Causal Assumption

e PO & SCM requires assumptions P(YOLAL) o
assumption
* Existing PO-based methods need to choose covariates D /
to satisfy the exchangeability assumption. M SCM
* Existing SCM-based methods need to manually draw assumption

the casual graph.
p! atformd cle,\ze,l oper U Y

/< \ How to obtain proper causal assumptions!?

Bus NEss @ @ custTomer

/ * Recommender system is a complex environment.
f.___ * Prior knowledge are insufficient.

social environment



Causal Assumption

* Future direction: causal discovery in recommendation

@ constraints
| )

( —

r‘e,comme_nda\'tion cou Sal J?SQOVGPV K\ j

doto a\lgor‘?'thm 67("0\P|"\

L W » = O

Automatic discovery of cause graphs with causal discovery algorithms
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Causal assumption

* Future direction: causal discovery in recommendation

* Challenges for applying casual discovery algorithms in recommendation

. = e
E =)
recommendation
data

C‘.O\USO\I discove,ﬁf
algor‘i‘thm

* Normal causal discovery algorithm only deals with few variables
* Challenge I:

High-dimensional inputs; hidden variables.
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Causal Assumption

* Future direction: causal discovery in recommendation

* Challenges for applying casual discover algorithms to recommendation

. = e
E =)
recommendation
data

CO\USO\I discove,ﬁf
algor‘?’thm

* The output usually is a set of causal graphs instead of only one graph.
* Challenge 2:

Unreliable graphs in the graph set.

123



Causal Modeling

* Existing work focuses on one training step

Data
Z : popularity
Exposed @ Collecting
item I (clicks, rates ...) Trammg
C click
user U Feedback Loop
System

Popularity also influences
the collecting step

O
O

I_ Serving E =1,
‘\_/

(Top-N recommendations)

How to model the causal effect of feedback loop?
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Causal Modeling

* Future direction: Temporal causal modeling

,[@ﬂ Collecting Cé

(clicks, rates ...) Training
Feedback Loop
System
?
00
2 serie__ A5

(Top-N recommendations)

Normal view

gE—

—

Temporal view

e >e
Al B1 Az BZ




Causal Modeling

* Existing work relies on latent representation

N
J

N

7] |16 \ %ﬂ ; 10 //. ,‘\
O g [ {\ O O O O/b
OO N user '
O item
o /
(eo00@®
Recommendation data Neural network representation

* The key of many recommender models is to learn user/item representations
* But, rare work focus on injecting causation into representations

How to learn causal representation?
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Causal Modeling

* Future direction: causal representation learning

7] ]
sl : ;

(0000)

user

QOOOO
CICTEIIT)
QOOOO
CIILICIO)

item

(egey

* Challenges:
- Grounding
- Modularity

P(x1, %3, ..., xn) = P(x1|pa;)P(x;z|paz) - - p(xn|pay,)

* P(x;|pa;) and P(x;|pa;) are independent.
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Causal Modeling

* Existing work requires many manual operations

YA
4 )
I Model
C > P(Cldo(U),do(l)) = ZP(ClU, 1,2)P(Z) >
; MF (u,i) x m}

U \ y,
) Manually define (2) Manually identify estimation (3) Manually design
causa: assu?ptlon, 8- goal according to (1) recommender model
castial grap based on (2)

How to reduce the cost of human-efforts?




Causal Modeling

* Future direction: Auto-causal recommendation

Z
) 4 )
Model
C > P(Cldo(U),do(l)) = Zp(cw, 1,7)P(2) > ode
; MF (u,i) x m}
U \. Y
(1) Manually define (2) Manually identify estimation (3) Manually design
causal assumption goal according to (1) recommender model

1 based on @l

l

Causal discovery Query/target causal understanding Causal model
+ automated causal inference automated searching
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Evaluation

* One thousand papers, one thousand evaluation protocols

Normal setting is hard to show the superiority of the causal recommendation. Lack the standard
evaluation setting.

()
d i Treilging OOQOD setting: debiasing, temporal setting
lid. sampling 5% Small random exposure data
/ \ — ( ) Different labels for training and testing
Testing
set

—

Normal setting Existing strategies

What are the standards for causal recommendation evaluation?

 Future direction: benchmark

New benchmark dataset for causal recommendation, standardize the evaluation
setting.



Evaluation

* Future direction: causality-aware evaluation metrics

Example | -- the effect of recommending operation
ltem recommend Not-
recommended

A and B are both matched to user preference, but A

purchase purchase
recommending B can bring more gains.
B purchase Not-purchase
Masahiro Sato et.al. Unbiased Learning for the Causal Effect of
Recommendation. In RecSys 2020.
Z
Example 2 --- path-specific fairness
unfair

Z affects Cviatwo paths: Z > A - CandZ - C
Only Z — ( is unfair. A C
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